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Background
- cores equivalent to processors
- faster performance → multiple cores
- data is shared by different cores, we need 

shared memory
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Coherence
- If one processor modifies the data, how can 

other processors know the latest value?
- having stale data and writing stale data 

results in error and incoherence
Core

private 
memory

private 
memory

private 
memory

Core Core Core

private 
memory

shared memory

private 
memory

private 
memory

4



Outline
1. Background on multicore/distributed systems

2. TARDIS Protocol

3. Optimizations and Evaluations
a. Delta Timestamps
b. Various Lease Predictor Protocols

4. Future Work and Acknowledgements

5



Tardis
- Recently proposed protocol
- Very scalable and simple
- Uses timestamps to logically organize shared 

memory and ensure coherence
- Allows for “time traveling” of operations 

since they don’t have to be done in sequence 
of physical time
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Library Example

Borrowing 
from 0 - 10

Borrowing 
from 0 - 20

Wants to edit, so jumps 
in time and edits at 21
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TARDIS Protocol
- Each cacheline in Tardis has a Read TimeStamp (RTS) 

and a Write TimeStamp (WTS)
- WTS - time of last store
- RTS - time of last read
- Private memory - data loaded at timestamp before rts
- Shared memory - rts is the longest private memory lease
- Cacheline Structure:

WTS RTS Data
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TARDIS Example
Core 0

Private 
Memory

Shared Memory

Core 1

Private 
MemoryPTS = 0 PTS = 0

WTS=0 RTS=0 A = 1

WTS=0 RTS=0 B = 0

Tasks:
Set A=2
Print B

Tasks:
Set B=3
Print A
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TARDIS Example
Core 0

Private 
Memory

Shared Memory

Core 1

Private 
MemoryPTS = 0 PTS = 0

WTS=0 RTS=0 A = 1

WTS=0 RTS=0 B = 0

Tasks:
Set A=2
Print B

Tasks:
Set B=3
Print A

Owner = Core 0 A

Write 
Request
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TARDIS Example
Core 0

Private 
Memory

Shared Memory

Core 1

Private 
MemoryPTS = 0 PTS = 0

WTS1 RTS1 A = 1

WTS=0 RTS=0 B = 0

Tasks:
Set A=2
Print B

Tasks:
Set B=3
Print A

Owner = Core 0 A

Load
  A

WTS1 RTS1 A = 2

PTS = 1
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TARDIS Example
Core 0

Private 
Memory

Shared Memory

Core 1

Private 
MemoryPTS = 1 PTS = 0

WTS1 RTS1 A = 2

WTS=0 RTS=0 B = 0

Tasks:
Set A=2
Print B

Tasks:
Set B=3
Print A

Owner = Core 0 A

Read
Request
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TARDIS Example
Core 0

Private 
Memory

Shared Memory

Core 1

Private 
MemoryPTS = 1 PTS = 0

WTS1 RTS1 A = 2

WTS=0 RTS=11 B = 0

Tasks:
Set A=2
Print B

Tasks:
Set B=3
Print A

Owner = Core 0 A

WTS0 RTS11 B = 0
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TARDIS Example
Core 0

Private 
Memory

Shared Memory

Core 1

Private 
MemoryPTS = 1 PTS = 0

WTS1 RTS1 A = 2

WTS=0 RTS=11 B = 0

Tasks:
Set A=2
Print B

Tasks:
Set B=3
Print A

Owner = Core 0 A

WTS0 RTS11 B = 0
Write
Request

Owner = Core 1 B
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TARDIS Example
Core 0

Private 
Memory

Shared Memory

Core 1

Private 
MemoryPTS = 1 PTS = 0

WTS1 RTS1 A = 2

WTS=0 RTS=11 B = 0

Tasks:
Set A=2
Print B

Tasks:
Set B=3
Print A

Owner = Core 0 A

WTS0 RTS11 B = 0

Owner = Core 1 B

PTS = 12

WTS12 RTS12 B = 0WTS12 RTS12 B = 3
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TARDIS Example
Core 0

Private 
Memory

Shared Memory

Core 1

Private 
MemoryPTS = 1

WTS1 RTS1 A = 2

WTS=0 RTS=11 B = 0

Tasks:
Set A=2
Print B

Tasks:
Set B=3
Print A

Owner = Core 0 A

WTS0 RTS11 B = 0

Owner = Core 1 B

WTS12 RTS12 B = 3

PTS = 12

Read
Request

Owner = Core 0 A

Share Request
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TARDIS Example
Core 0

Private 
Memory

Shared Memory

Core 1

Private 
MemoryPTS = 1

WTS1 RTS1 A = 2WTS1 RTS22 A = 2

WTS=0 RTS=11 B = 0

Tasks:
Set A=2
Print B

Tasks:
Set B=3
Print A

WTS0 RTS11 B = 0

Owner = Core 1 B

WTS12 RTS12 B = 3

PTS = 12

Owner = Core 0 AWTS=1 RTS=22 A = 2

Sharing
Cacheline WTS1 RTS22 A = 2

Done
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Timestamp Compression
- Timestamp size should be small for space efficiency
- Data is 512 bits; timestamp originally 64 bits each (25% 

of data)
- Wts and rts are usually fairly close, so we use a base 

timestamp (bts) and a delta (difference) = rts-wts to 
represent rts and wts

- We then ran tests to determine the optimal bts
- Now 16 bits each (6.25% of data)
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Timestamp Compression

BTS
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The Renewal Problem
- if we keep modifying data, timestamps will increase by 

the arbitrary value of 10
- read-write intensive, want the lease to be something much less than 10

- read-only data, we keep renewing it, lease can be very 
large

- renew requests incur extra latency and network traffic
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Minimizing Renewals
- an adaptively changing lease

- lines that are written to frequently should have a 
small lease

- lines written to less frequently/read-only should 
have longer lease

- two basic protocols
- exponentially growing lease
- linearly growing lease
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Evaluations of Lease Protocols
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Evaluations of Lease Protocols
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Future Work
- better lease prediction algorithm

- Renew in batches

- Renew in the background

- Techniques to slow down timestamp increment

- Further timestamp compression
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