
Time travelling in multicore
processors

Henry Liu and Ethan Zou

1

Outline
1. Background on multicore/distributed systems

2. TARDIS Protocol

3. Optimizations and Evaluations
a. Delta Timestamps
b. Various Lease Predictor Protocols

4. Future Work and Acknowledgements

2

Background
- cores equivalent to processors
- faster performance → multiple cores
- data is shared by different cores, we need

shared memory
Core Core Core

private
memory

shared memory

private
memory

private
memory

3

Coherence
- If one processor modifies the data, how can

other processors know the latest value?
- having stale data and writing stale data

results in error and incoherence
Core

private
memory

private
memory

private
memory

Core Core Core

private
memory

shared memory

private
memory

private
memory

4

Outline
1. Background on multicore/distributed systems

2. TARDIS Protocol

3. Optimizations and Evaluations
a. Delta Timestamps
b. Various Lease Predictor Protocols

4. Future Work and Acknowledgements

5

Tardis
- Recently proposed protocol
- Very scalable and simple
- Uses timestamps to logically organize shared

memory and ensure coherence
- Allows for “time traveling” of operations

since they don’t have to be done in sequence
of physical time

6

Library Example

Borrowing
from 0 - 10

Borrowing
from 0 - 20

Wants to edit, so jumps
in time and edits at 21

7

TARDIS Protocol
- Each cacheline in Tardis has a Read TimeStamp (RTS)

and a Write TimeStamp (WTS)
- WTS - time of last store
- RTS - time of last read
- Private memory - data loaded at timestamp before rts
- Shared memory - rts is the longest private memory lease
- Cacheline Structure:

WTS RTS Data

8

TARDIS Example
Core 0

Private
Memory

Shared Memory

Core 1

Private
MemoryPTS = 0 PTS = 0

WTS=0 RTS=0 A = 1

WTS=0 RTS=0 B = 0

Tasks:
Set A=2
Print B

Tasks:
Set B=3
Print A

9

TARDIS Example
Core 0

Private
Memory

Shared Memory

Core 1

Private
MemoryPTS = 0 PTS = 0

WTS=0 RTS=0 A = 1

WTS=0 RTS=0 B = 0

Tasks:
Set A=2
Print B

Tasks:
Set B=3
Print A

Owner = Core 0 A

Write
Request

10

TARDIS Example
Core 0

Private
Memory

Shared Memory

Core 1

Private
MemoryPTS = 0 PTS = 0

WTS1 RTS1 A = 1

WTS=0 RTS=0 B = 0

Tasks:
Set A=2
Print B

Tasks:
Set B=3
Print A

Owner = Core 0 A

Load
 A

WTS1 RTS1 A = 2

PTS = 1

11

TARDIS Example
Core 0

Private
Memory

Shared Memory

Core 1

Private
MemoryPTS = 1 PTS = 0

WTS1 RTS1 A = 2

WTS=0 RTS=0 B = 0

Tasks:
Set A=2
Print B

Tasks:
Set B=3
Print A

Owner = Core 0 A

Read
Request

12

TARDIS Example
Core 0

Private
Memory

Shared Memory

Core 1

Private
MemoryPTS = 1 PTS = 0

WTS1 RTS1 A = 2

WTS=0 RTS=11 B = 0

Tasks:
Set A=2
Print B

Tasks:
Set B=3
Print A

Owner = Core 0 A

WTS0 RTS11 B = 0

13

TARDIS Example
Core 0

Private
Memory

Shared Memory

Core 1

Private
MemoryPTS = 1 PTS = 0

WTS1 RTS1 A = 2

WTS=0 RTS=11 B = 0

Tasks:
Set A=2
Print B

Tasks:
Set B=3
Print A

Owner = Core 0 A

WTS0 RTS11 B = 0
Write
Request

Owner = Core 1 B

14

TARDIS Example
Core 0

Private
Memory

Shared Memory

Core 1

Private
MemoryPTS = 1 PTS = 0

WTS1 RTS1 A = 2

WTS=0 RTS=11 B = 0

Tasks:
Set A=2
Print B

Tasks:
Set B=3
Print A

Owner = Core 0 A

WTS0 RTS11 B = 0

Owner = Core 1 B

PTS = 12

WTS12 RTS12 B = 0WTS12 RTS12 B = 3

15

TARDIS Example
Core 0

Private
Memory

Shared Memory

Core 1

Private
MemoryPTS = 1

WTS1 RTS1 A = 2

WTS=0 RTS=11 B = 0

Tasks:
Set A=2
Print B

Tasks:
Set B=3
Print A

Owner = Core 0 A

WTS0 RTS11 B = 0

Owner = Core 1 B

WTS12 RTS12 B = 3

PTS = 12

Read
Request

Owner = Core 0 A

Share Request

16

TARDIS Example
Core 0

Private
Memory

Shared Memory

Core 1

Private
MemoryPTS = 1

WTS1 RTS1 A = 2WTS1 RTS22 A = 2

WTS=0 RTS=11 B = 0

Tasks:
Set A=2
Print B

Tasks:
Set B=3
Print A

WTS0 RTS11 B = 0

Owner = Core 1 B

WTS12 RTS12 B = 3

PTS = 12

Owner = Core 0 AWTS=1 RTS=22 A = 2

Sharing
Cacheline WTS1 RTS22 A = 2

Done

17

Outline
1. Background on multicore/distributed systems

2. TARDIS Protocol

3. Optimizations and Evaluations
a. Delta Timestamps
b. Various Lease Predictor Protocols

4. Future Work and Acknowledgements

18

Timestamp Compression
- Timestamp size should be small for space efficiency
- Data is 512 bits; timestamp originally 64 bits each (25%

of data)
- Wts and rts are usually fairly close, so we use a base

timestamp (bts) and a delta (difference) = rts-wts to
represent rts and wts

- We then ran tests to determine the optimal bts
- Now 16 bits each (6.25% of data)

19

Timestamp Compression

BTS

20

Outline
1. Background on multicore/distributed systems

2. TARDIS Protocol

3. Optimizations and Evaluations
a. Delta Timestamps
b. Various Lease Predictor Protocols

4. Future Work and Acknowledgements

21

The Renewal Problem
- if we keep modifying data, timestamps will increase by

the arbitrary value of 10
- read-write intensive, want the lease to be something much less than 10

- read-only data, we keep renewing it, lease can be very
large

- renew requests incur extra latency and network traffic

22

Minimizing Renewals
- an adaptively changing lease

- lines that are written to frequently should have a
small lease

- lines written to less frequently/read-only should
have longer lease

- two basic protocols
- exponentially growing lease
- linearly growing lease

23

Evaluations of Lease Protocols

24

Evaluations of Lease Protocols

25

Outline
1. Background on multicore/distributed systems

2. TARDIS Protocol

3. Optimizations and Evaluations
a. Delta Timestamps
b. Various Lease Predictor Protocols

4. Future Work and Acknowledgements

26

Future Work
- better lease prediction algorithm

- Renew in batches

- Renew in the background

- Techniques to slow down timestamp increment

- Further timestamp compression

27

Acknowledgements
We would like to thank:
- our parents
- our mentor, Xiangyao Yu and Professor Srini

Devadas
- the MIT PRIMES program

28

